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The impact of drops impinging one by one on a solid surface is studied experimentally 
and theoretically. The impact process is observed by means of a charge-coupled-device 
camera, its pictures processed by computer. Low-velocity impact results in spreading 
and in propagation of capillary waves, whereas at higher velocities splashing (i.e. the 
emergence of a cloud of small secondary droplets, absent in the former case) sets in. 
Capillary waves are studied in some detail in separate experiments. The dynamics of 
the extension of liquid lamellae produced by an impact in the case of splashing is 
recorded. The secondary-droplet size distributions and the total volume of these 
droplets are measured, and the splashing threshold is found as a function of the impact 
parameters. 

The pattern of the capillary waves is predicted to be self-similar. The calculated 
wave profile agrees well with the experimental data. It is shown theoretically that the 
splashing threshold corresponds to the onset of a velocity discontinuity propagating 
over the liquid layer on the wall. This discontinuity shows several aspects of a shock. 
In an incompressible liquid such a discontinuity can only exist in the presence of a sink 
at its front. The latter results in the emergence of a circular crown-like sheet virtually 
normal to the wall and propagating with the discontinuity. It is predicted theoretically 
and recorded in the experiment. The crown is unstable owing to the formation of cusps 
at the free rim at its top edge, which results in the splashing effect. The onset velocity 
of splashing and the rate of propagation of the kinematic discontinuity are calculated 
and the theoretical results agree fairly well with the experimental data. The structure 
of the discontinuity is shown to match the outer solution. 

1. Introduction 
Drop impact on solid surfaces is a phenomenon encountered in a wide variety of 

fields, e.g. ink jet printing, soil erosion by rain, spray cooling, annealing, quenching and 
painting, shock atomizing, engines, meteorology. In spite of its commonness, and 
although some of its features have been known for decades (see e.g. Worthington, 1876, 
1877, 1908), the mechanism of drop impact, especially in the case of multiple drops, is 
far from clear. Reviews of the present state of knowledge can be found in Prosperetti 
& Oguz (1993) and Rein (1993) and references therein; some of them, as well as 
additional ones, are discussed below. 

t Present address : Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, 
Haifa 32000, Israel. 
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Several cases are generally to be considered as essentially distinct. Drops can hit a 
solid or a wet surface, which in the latter case can be that of a deep or shallow liquid. 
Sometimes bouncing of a drop takes place; in the case of heated solid surface the 
Leidenfrost effect may be responsible (Rein 1993; Fukai et al. 1993; Naber & Farrell 
1993; Labeish 1994). The impact of a solitary drop differs from that of a train of drops 
(impinging one by one), as is the case in most situations of practical interest. The non- 
triviality of such situations has been recognized by Riedel (1977) mainly in acoustic 
effects. 

In the present paper we investigate in detail the impact of drop trains onto a solid 
surface which is initially dry but acquires a liquid film in the steady state at the 
moments of impact. Our main goals are a physical model for the self-similar capillary 
waves, as well as the splashing phenomenon, and estimation of the splashing threshold. 

In the experimental part of the work it is shown that there is a universal dependence 
of the critical impact velocity, V,,, at which splashing first occurs, on the physical 
parameters of the liquid (i.e. its density, surface tension and kinematic viscosity) and 
on the frequency of the drop train. For impact velocities y0 < V,, a drop spreads over 
the wall in the form of a thin liquid film without any secondary droplet formation, with 
the impact energy totally absorbed, first, by capillary waves. (These waves are studied 
in a separate experiment.) On the other hand, for V, > V,, experimental results of the 
present work, as well as those of Levin & Hobbs (1971), show a completely distinct 
picture. Upon impact on shallow liquid layer (in our case the film produced by 
preceding drops), a crown-like liquid sheet, virtually normal to the film, emerges and 
propagates radially from the centre of impact. At its top edge, owing to the action of 
surface tension, there immediately appears a free rim propagating over it towards the 
wall (see e.g. figure 8 in Levin & Hobbs 1971 and the photograph of Edgerton & Killian 
in Allen 1988 and Peregrine, Shoker & Symon 1990, as well as the detailed studies of 
the free rims at the edges of free liquid films in Taylor 1959 and Yarin 1993). Taylor 
(1959) showed that the free rims propagate with a velocity independent of their local 
curvature. Therefore being (inevitably) disturbed the free rims produce cusps, which 
is readily seen by applying the Huygens principle (Yarin 1993, pp. 27-28). Cusp 
formation is considered in more detail below in $8. At the cusp sites thin liquid jets are 
formed, which are unstable - again owing to the action of surface tension (capillary 
instability of the Rayleigh type) - with eventual breakup and formation of very small 
droplets (see the sketch in figure 1 as well as figure 8 in Levin & Hobbs 1971, where 
the cusps and thin liquid jets outflowing from them are clearly seen; see also figure 16 
below). 

It should be emphasized that in the splashing phenomenon the role of gravity is 
negligible owing to the small scales involved, and only inertia and surface tension are 
of importance. By contrast, in the hydraulic jump phenomenon gravity is the driving 
force even where surface tension has to be taken into account (Liu & Lienhard 1993). 
Thus splashing and hydraulic jumps are totally distinct phenomena. 

Theoretical models of various stages of splashing have been proposed by several 
authors. Engel (19551, Bowden & Field (1964), Lesser (1981) and Lesser & Field (1983) 
worked out the modelling of the compressibility effect, which is of importance at the 
early stage of splashing, leading to jetting of a drop over a solid surface. Below in @3 
and 8 we use the results of Bowden & Field (1964) to estimate the effect of 
compressibility in the present case (it is shown that this effect is negligibly small under 
the conditions of our experiment). 

Allen (1975) tried to explain the small fingering seen sometimes at the circumference 
of a drop impacting a solid surface (see also Engel 1955 and Loehr & Lasek 1990). He 
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FIGURE 1 .  (a) Sketch of splashing mechanism: 1, residual top of impacting drop; 2 ,  wall; 3, section 
of crown-like sheet propagating outwards; 4, cross-section of free rim; 5, secondary droplets formed 
from cusps of free rim; 6. liquid layer on wall. (b)  Free rim and secondary droplets magnified: I .  
crown-like sheet; 2 ,  free rim at its top edge; 3, cusp; 4, thin jet emerging at cusp; 5, secondary droplets 
formed on breakup of jet. 

considers the circumferencial section of the interface moving radially outwards and 
decelerating by friction forces from the solid surface. He argues that i t  should be 
subject to Rayleigh--Taylor instability. However, to match the experimental evidence 
with such a model requires a deceleration of the order or - 160 g ( g  is the gravity 
acceleration), which seems to be too high. 

Peregrine (1981) proposed a model which might be used to predict crown 
propagation in splashing. The model supposes the flow to be steady in the 
neighbourhood of the impact point and crown basement (in the reference frame 
‘frozen’ there). It is based essentially on the steady Bernoulli equation. Therefore it 
predicts a constant (time-independent) speed of crown propagation. The data of Levin 
& Hobbs (1971), as well as the experimental results of the present work, show that this 
is not the case in the splashing of drops. Thus the model of Peregrine (1981) cannot be 
applied to this essentially non-steady phenomenon. Nevertheless, this model might be 
helpful in large-scale splashes which is the main focus in Peregrine (1 98 1). 

In $2 the experimental set-up used, consisting of the equipment and the algorithms 
developed for picture evaluation, is described. In 4 3  the results of the experiments are 
reported. 

At first sight the real pattern of splashing appears too complicated for any 
theoretical treatment except a numerical one (see e.g. Harlow & Shannon 1967; 
Prosperetti & Oguz 1993). However, in &4-7 we show that the underlying mechanism 
and its description may be readily represented by a relatively simple quasi-one- 
dimensional model. In $4 we obtain the governing equations of the surface-tension- 
dominated flow in a thin liquid film on a wall. In $ 5  we discuss briefly the propagation 
of capillary waves over such a film and find self-similar regimes. The splashing 
condition is derived in 96. The physical nature of splashing is explained in terms of a 
kinematic discontinuity formation, with a sink at its front, apparently of a new type 
- a discontinuity (a kind of shock wave) in an incompressible liquid. In 47 we address 
the structure of this discontinuity. The theoretical results are compared in 48 with the 
experimental data of $3 where the discussion is presented. The conclusions are 
summarized in $9. 
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FIGURE 2(a).  For caption see facing page. 

2. Experimental set-up 
2.1. Equipment 

Capillary waves are excited here by the impact of a thin stick (thickness 0.4 mm) of 
copper onto a liquid film of ethanol (thickness 1.4 mm). The stick falls along its axis 
perpendicularly to the film surface. The wave patterns are observed by means of a 
charge-coupled-device camera from below the film. They are illuminated from above 
by flashes of a light-emitting diode (LED) fed by a light-pulse generator, which in turn 
is triggered by a light barrier. The delay of the flash can be varied continuously from 
1 ps to 1 s. The camera takes pictures with 25 Hz and forwards them to a computer, 
where they can be supervised on a monitor and eventually be printed out by a video 
graphic printer. 

The experimental set-up to observe capillary waves is shown schematically in figure 
2 (a).  The observation technique is essentially a shadowgraph technique, dark and 
bright areas in the pictures correspond to sites with positive and negative curvature of 
the free film surface, respectively. 

Monodisperse drops are produced by a technique developed by Schneider & 
Hendricks (1964) and further by Lindblad & Schneider (1965). A free jet is modulated 
by an oscillating piezoelectric crystal, situated upstream of the nozzle, and breaks up 
according to Rayleigh instability into drops of equal size which can be varied within 
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FIGURE 2. Experimental set-up : (a) investigation of capillary waves, 
(b) investigation of drop impact. 

a certain range for a fixed jet velocity. Different nozzle diameters are used here, and the 
drop diameter can be chosen from about 70 to 340 pm. The jet velocity is controlled 
by the pressure in a reservoir, limited in our case to about 5.5 bar, allowing jet velocities 
up to approximately 30 m s-'. 

The temperature of the test liquids (essentially room level) is determined by a 
thermocouple element measuring the nozzle temperature. 

After a distance along which the drop oscillations fade away, the drops hit a solid 
surface. The specimens used have mean roughnesses of R, z 1 or 16 pm, respectively. 
They can be heated from below by the tips of soldering irons; their temperature is 
measured by an additional thermocouple element. In the experiments performed the 
wall temperature is kept below the boiling point of the test liquids. 

The impact process is observed by means of a charge-coupled-device camera. As 
before, it forwards the pictures to the computer where they are processed and 
evaluated; they can likewise be supervised on monitor and eventually printed out by 
the video printer. 
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FIGURE 3. Sampling volume. H ,  A ,  and A are its height, thickness, and length, respectively. Droplet 
size statistics are extrapolated from this sampling volume to the impact process; the method works 
only if A 5 r,,, the radial distance of the front wall of the sampling volume from the impact site. The 
x-axis is perpendicular to the front wall of the sampling volume and lies within the focal plane of the 
camera. Here ro % 1 mm, H z 2 mm, A z 0.85 mm, A z 3 mm. 

The modified experimental set-up to observe drop impact is shown schematically in 
figure 2(b). The site of drop impact on the solid surface is illuminated by the light of 
a LED triggered by the signal generator, i.e. the same source as the piezoelectric 
crystal, and fed by a light-pulse generator which in turn is actuated by a stroboscope, 
whereby the phase of its flash can be shifted between 0 and 21c. There is also provision 
for illuminating by single flashes, in which case the light-pulse generator waits for the 
conditioned ready signal of the camera. 

Drop velocity is determined as the product of the signal generator’s frequency and 
the spacing of the successive drops, which, in turn, is measured from the pictures. 

All test liquids are Newtonian. Their density, surface tension, viscosity, and in one 
case also velocity of sound, are varied over a fairly wide range. Most experiments are 
performed with ethanol or mixtures of ethanol, glycerol, and water. The density is 
determined by measuring the mass of a known volume of the liquid. The surface 
tension is measured statically with a tensiometer, and the viscosity is determined with 
capillary viscometers. The velocity of sound is taken from the literature. 

2.2. Computer-aided picture evaluation 
As described in the preceding subsection, the impact process is recorded by means of 
a CCD camera. Evaluation of the pictures was intended to be performed by computer 
as far as possible. New algorithms were developed for that purpose (Weiss 1993), 
permitting determination of the diameter and velocity of the incoming drops (if two or 
more drops are shown on the same picture), as well as the number and sizes of the 
secondary droplets formed if the drops splash (cf. 43), and thereby the total mass 
fraction ejected in the form of droplets. 

The basic task of the algorithms is to recognize sharply represented (well-focused) 
drops or droplets, using a technique presented by Fantini, Tognotti & Tonazzini 
(1990), whereby drops are essentially recognized as well-focused if the grey area 
between their dark core and the bright background, i.e. their ‘halo’, is narrow enough. 
Sizes and centre-of-mass coordinates are determined by means of contour integrals, so 
that bright spots within dark drops have no effect. To obtain true sizes instead of a 
number of picture elements, the algorithm has to be calibrated by taking photographs 
of transparent rulers. 

With these basic routines it is possible to determine the drop impact velocity and 
secondary droplet size distributions. For the former, the average spacing of successive 
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FIGURE 4. Pattern of capillary waves taken 5 ms after impact of a copper stick onto an ethanol 
film of 1.4 mm thickness. The whole picture covers an area of about 25 mm x 35 mm. 

FIGURE 5. Spreading ethanol drops stroboscopically illuminated; spreading lamellae at two different 
stages can be recognized. Drop diameter D = 279 km, impact velocity V, = 7.8 m ssl, u = 16.9. 

drops is multiplied by the impact frequency, whereas for the latter the statistics 
extracted from a picture series of a sampling volume (figure 3) are extrapolated to the 
full impact process. A series consists of 20 pictures, so the statistical results obtained 
are reliable. The thickness d of the sampling volume was determined by calibration 
measurements. The extrapolation takes into account that the droplets have to be 
weighted by an x-dependent factor before the sum over x is calculated. In the 
experimental set-up the x-axis is parallel to the solid surface and perpendicular to the 
direction of observation, i.e. parallel to the focal plane of the camera. 

3. Capillary waves, spreading and splashing drops 
3.1. Surface elevations 

Capillary waves are observed using the technique described in 52. An example is shown 
in figure 4. Dark and bright concentric rings can be recognized. It is seen that the stick 
is thin enough for our purposes. For evaluation the radii of the dark rings are 
measured, which have to be compared with the maxima of the curvature of the 
calculated film profile (cf. 555 and 8). 

3.2. The splashing threshold 
In the investigated range of impact velocities the drops initially take the shape of 
lamellae because they spread along the wall from which their rims seem to issue. A 
stroboscopically illuminated picture of such lamellae is shown in figure 5 ,  where two 
different stages can be recognized. 
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FIGURE 6. Splashing ethanol drops illuminated by single flash. Drop diameter D = 276 pm, 
impact velocity & = 12.7 m ssl, u = 22.5. 

With the impact parameters, i.e. velocity, frequency, and drop diameter, suitably 
chosen the lamellae later take the shape of crowns; their lower part consists of a thin 
liquid sheet and at the upper part the sheets are unstable forming the rims of the 
crowns, from which small secondary droplets are ejected. The drops begin to splash. 
Figure 6 shows a picture of splashing drops illuminated by a single flash. Note that the 
term ‘droplets’ (or secondary droplets) refers to what is ejected from the rim of the 
crowns, whereas ‘drops’ are what hits the solid wall. 

In order to obtain a quantitative condition for the drops to splash, the splashing 
threshold is determined for different values of drop diameter D, frequency f, and 
velocity V, as well as of the mean wall roughness R,, its temperature and also of the 
liquid density, surface tension, viscosity, and even the velocity of sound. 

The procedure is as follows. For a chosen test liquid, the frequency f to splash is 
determined as a function of the pressure in the reservoir (i.e. the drop velocity). It is 
observed that reducing the frequency for a fixed velocity promotes splashing; thus one 
might conclude from continuity arguments that larger drops generally begin to splash 
at lower velocities than smaller ones. This conjecture, however, is disproved by the data 
plotted in figure 7. It is evident that for a chosen liquid the drop velocity and its 
diameter alone do not describe the impact process completely. The drop velocity at the 
splashing threshold is not even a single-valued function of the drop diameter, but also 
depends on another parameter, e.g. the nozzle diameter 4. Another consequence is that 
the splashing threshold cannot be described by a single-drop Reynolds number Re = 
V, D / v  or Weber number We = p D V i / a  (V, being the impact velocity, D the drop 
diameter, and p, a, and v are the density, surface tension and kinematic viscosity, 
respectively). Nevertheless, the splashing threshold can be characterized by a single 
dimensionless number, because the capillary number Ca = pV, v/a = We/Re is a 
simple function of a non-dimensional ‘viscosity length’ h = (v/f)l12a/(pv2) at the 
splashing threshold. This function is plotted in figure 8 for the two surface specimens 
used. It describes the splashing threshold by the correlation Ca = Ch-3/4, where the 
coefficient C depends only slightly on the mean surface roughness R, (at least as long 
as R, < D), and which can be rewritten as Cuh3/4 = &(p/a)1i4v-1ief-3/s = u = C z 17 
to 18, where the dimensionless impact velocity u is introduced. For figure 8 the 
parameters Ca = pV, v/a and h = (~/f)’/~a/(pv~) were typically known to an accuracy 
of about 2 to 4 % : V,, v, a, p and f were known up to about 0.3 to 0.5, 2, 0.5, 0.3 and 
0.1 %, respectively. 

The splashing threshold at u = 17 to 18 corresponds to developed crown instability, 
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FIGURE 7. Impact velocity at splashing threshold V,, as function of drop diameter for ethanol and 
surface specimen with roughness R, = 1 pm at room temperature. Drop diameter and velocity do not 
describe the impact process completely even for a single liquid. Another quantity (e.g. nozzle 
diameter) must thus be of importance since V,, is not a single-valued function of D .  The different 
symbols correspond to different nozzle diameters $J. 
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FIGURE 9. Splashing threshold : comparison of selected data points obtained for surface roughness 
R, = 1 pm; the drop diameter does not enter the correlation at the onset of splashing. 

strong enough to produce a cloud of secondary droplets. In some cases below this 
threshold, a crown is not high enough or the process is not long enough to produce 
secondary droplets (e.g. figure 5) .  Therefore crown formation begins slightly below the 
splashing threshold. 

It is emphasized that it was impossible to correlate the onset of splashing with the 
Mach number of a liquid based on its sonic speed, which shows that under the given 
conditions early events related with compressibility are ‘forgotten ’ almost in- 
stantaneously (in timescale of the whole splashing process). 

It is thus not extraordinary that the drop diameter does not enter the splashing 
threshold correlation at all; this fact is confirmed by figure 9 and implies that the 
splashing process indeed has its cause in the flow within the lamella itself rather than 
in the drop impact details. 

The fact that R J D  hardly influences C is also easy to understand; it is clear that the 
drops hitting the solid surface meet a liquid film arising from the preceding drops. If 
this liquid film is thick compared to R,, it is to be expected that the drops are not 
affected much by surface roughness. In our experiments we got an estimation for the 
liquid film thickness by comparing on the pictures the horizons for a dry surface and 
the surface while experiments were running. In this way we obtained for the film 
thickness h, values between 20 pm (for the smallest drops) and 50 pm (for the large 
drops). This leads to h,/D M 1/6 typically. The film thickness h, can therefore be taken 
as large, at least as compared to R, = 1 pm, and, with some care, also compared to 
R, = 16 pm. 
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FIGURE 10. Radial extension of the splashing lamellae (ethanol drops stroboscopically illuminated). 
Drop diameter D = 312 pm, impact velocity = 10.0 m s-l, u = 22.3. The phases, i.e. the non- 
dimensional times T = 2xft after impact, are: (a) x/3, (b)  5x/6, ( c )  4x/3, and ( d )  1 lx/6. Note that the 
droplet production at the crown’s rim can be more or less irregular, as can be seen in (c) on the left 
and the right side of the crown. The drops have been numbered to identify the crowns. 
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FIGURE 11. Radial position of crown’s rim as function of phase, i.e. non-dimensional time 7 = 2nft. 
The experimental data are indicated by the cross symbols; their best fits are shown by fine lines; 
the curves predicted by the theory (equation (8.7)) by bold lines. (a) D = 258 pm, V, = 8.74 m s-l, 
f= 16.317kHz,u= 16.6.(b)D=269pm,V,= 11.4ms-’,f= 19.523kHz,u=ZO.Z.(c)D=271pm, 
V, = 12.5 m s-l, f = 19.973 kHz, u = 22.0. The data for all these plots were obtained with ethanol 
drops. 

3.3. Extension kinematics of lamellae 

Having shown that the cause of splashing lies in the flow within the lamella, it is 
appropriate to investigate the extension of the latter. The easiest way is to measure the 
radial propagation of the rim of the crowns, which is illustrated by figure 10. This yielded 
figure 11. The distance of the rim from the impact centre (in drop diameter units) is 
shown as a function of the phase 7, which is time multiplied by 27cJ The best-fit 
approximations of the experimental data given in figures 11 (a)-1 1 (c)  respectively, are 
as follows: 

r , /D = 1.00(~-1.54)”~, r , /D = 1.09(7-1.38)1/2, r,/D = I.12(7- 1.28)’/2, 
(3.1 a-c) 

where r ,  is the crown radius. 
These best fits have been obtained by optimizing K and T,, in the form 

r , /D = K(T-70)1’2. (3.2) 
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FIGURE 13. Rim elevation, corresponding to the impact of ethanol drops with D = 269 pm, 
V, = 11.4ms-',f= 19.523 kHz, u = 20.2. 

The values of K and T,, are plotted as functions of u in figure 12, which shows that 
K appears to increase, and T~ to decrease, with increasing u. 

The elevation of the rim (measured from an arbitrarily chosen level) as a function 
of its radius is shown in figure 13. This function is a good approximation of a straight 
line. Thus gravity can be neglected up to this stage. 

Instantaneous configurations of the crown generatrices below breakup points seen 
in figures 6 and 10 are also a good approximation of a straight line. Therefore the intact 
crowns are too short in this case (because crown breakup is too fast) to approximate 
them accurately enough by parabolic forms arising under the gravity effect, like those 
calculated by Peregrine (I 98 1). 
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FIGURE 15. Total mass of secondary droplets in units of drop volume. The error bars denote an error 
of 14%, which is mainly due to the uncertainty of the thickness A of the sampling volume. 
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FIGURE 16. A crown’s rim of a splashing lamella illuminated by a single flash. 

3.4. Droplet size distributions 
The numbers and sizes of the secondary droplets are determined by means of the 
technique presented in the preceding section. The experiments are performed with 
ethanol on the smooth-surface specimen (R,  x 1 pm). It is found that the droplet 
diameters cover extended spectra, ranging from nearly zero to about one-quarter of the 
drop diameter (cf. figure 14). The distributions have their global maximum at d / D  x 
0.06 and one or more bumps at larger values of d / D .  

The total ejected mass is readily obtainable from the distributions in figure 14. The 
result is shown in figure 15. The mass fraction grows monotonically from zero at the 
splashing threshold, apparently tending to a limiting value which is less than 1 for 
larger values of u. For further details concerning the distributions, see Weiss (1993). 

It may be useful to give some estimates of sizes here, i.e. a typical crown wall 
thickness as well as the thickness of a jet arising from a cusp. As an example we take 
the picture illuminated by a single flash shown in figure 16. We obtain for the crown 
wall thickness, 6, values of 1/50 5 S/D 5 1/15, typically 6 / D  x 1/30. For the jet 
thickness A we measure 1/15 5 d / D  5 1/8, typically A / D  x 1/10. 

4. Governing equations 
In this section we present a quasi-one-dimensional theory for the splashing process. 

It considers the flow in the liquid lamella after the impact. This approach is justified 
by the fact that the diameter of the impacting drops does not affect the splashing 
process at all, as was shown above in the experimental part. 

We treat the problems of a planar and an axisymmetric geometry in parallel. For the 
theoretical results to be compared to the experimental ones of the present work, the 
axisymmetric case must be used. We consider the flow in a thin liquid film bounded on 
one side by a solid surface; the other surface is assumed to be free. Lengthscales are 
to be very small for gravity effects to be neglected. We also neglect viscosity effects for 
the moment (this point will be discussed below). 

We adopt a simplified quasi-one-dimensional approach averaging the flow velocity 
over the layer thickness. Accordingly, the continuity equation for the planar case take 
the form 

ah ah V 
-+- = 0, 
at ax 

where t is time, x the coordinate along the wall, h the layer (lamella) thickness, and V 
the velocity. Here and hereinafter the liquid is supposed to be incompressible; as is 
shown below, compressibility is of importance only at the very beginning of the drop 
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impact process, whereas it does not affect the lamella extension nor splashing process 
itself. 

The momentum equation expresses the balance of the inertial and surface tension 
forces : 

Here p is density, pa stands for the capillary pressure, and F, is the x-projection of 
the surface tension force acting at the free surface: 

(4.3a, b) 

(a being the surface tension coefficient). 
By (4.1)-(4.3) we arrive at the following form of the momentum equation: 

1 
(4.4) 

In the given problem the characteristic scales of h, V, t ,  and x are h,, &, l / f ,  and V,/” 
respectively, where h, is some unperturbed thickness of the layer -(discussed below), V, 
the impact velocity of a drop, andfthe frequency of the drop train. We assume that 
(h,f/V,)2 4 1, which corresponds to the experimental data (e.g. for h, 5 m,f= 
19.5 kHz, V, - 10 m s-l, the ratio (h,,f/V,)’ - lo-’). Therefore we can neglect the 
derivative (i3h/i3x)2 relative to unity and obtain the governing equations of the planar 
case in the following form: 

-+-=O, ph 
at ax 
ah ah V 

Here the unknowns are h and V. 
In the axisymmetric case the continuity equation takes the form 

= 0, 
drh arh V -+- 
at ar 

where r is the polar radius from the point of drop impact. 
The momentum balance reads (with (ah/ar)2 neglected relative to unity) 

(4.5 a, b) 

a a 2 a a a 
- (prh Ve,) + - (prh P e r )  = - ( -pa rhe,) + - ( -pa he + - (are,) +- (ae& 
at ar ar a4 C) ar a4 

(4.7) 
where e, and e# are the unit vectors of the radial and azimuthal directions; 4 is the 
polar angle, pa  is given by ( 4 . 3 ~ )  with r instead of x. 

By projecting (4.7) onto the radial direction we arrive at the following governing 
equations for the axisymmetric case : 

(4.8a, b) 

5.  Capillary waves 

perturbations of the thickness and velocity are defined by the expressions 

where x and /3 are much smaller than unity. 

Consider the propagation of small perturbations over a planar liquid film. The 

(5.1 a, b) h = h,V+ x(x,  01, V = V,[ l+P(x ,  01, 
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Substituting (5.1) in (4.5) and linearizing the governing equations, we arrive at 

(5.2a, b) 

The wave-like solutions 

x = xo exp (iwt + ikx), p = Po exp (iwt + ikx) (5.3a, b) 

(where xo and Po are some constants, w is the angular frequency, and k is the 
wavenumber) readily yield a well-known dispersion relation (Whitham 1974, p. 405) 

w = -kV,+ak2, a = (ah0/p)l/'. (5.4a, b) 

We can also consider a liquid layer to be at rest, until at t = 0 a rather small 
perturbation is introduced at its centre (for example, by a drop falling from a small 
height or by a thin stick). In this case we assume V to be of the order of the 
perturbation, whereas for h expression (5.1 a) is used. 

Linearizing equations (4.5), we obtain in the case studied here 

wherefrom we arrive at the following equations : 

a Z x  a4x a2v a4v 

at2 ax4 a t 2  ax4 
-+a2-  = 0 ---+a2-- = 0. 

(5.5a, b) 

(5.6a, b) 

Equations (5.6) represent a well-known beam equation. As x -+ & 00 the perturbation 
vanishes, x -+ 0. 

With a pointwise drop or stick as the source of the perturbation (which means that 
we study the remote asymptotics of the solution), the problem is self-similar and its 
solution should be sought in the form 

As usual, we pose the following initial conditions 

av 
at  

t = 0, v = (a/t)"2S6(?j), - = 0, (5.8a, b) 

where S is the non-dimensional perturbation 'strength '. 
Self-similar solutions of (5.6) and (5.8) satisfy the equations 

f " + i r y + ; r f '  = 0, @ i " + ; g @ " + $ @ ' + p  = 0. (5.9a, b) 

The solution for large 7 is readily found, which yields the following wave trains: 

[cos (iy2) + sin (i7'))l. (5.10 b)  

The expression (5.10b) is similar to that of Whitham (1974, p. 378). Solution (5.10) 

t = 0, x = S($n)1/26(7). (5.11) 

also corresponds to the initial perturbation of x in the form 
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FIGURE 17. Calculated film thickness profile (----) and its curvature (-) for capillary waves 

according to (5.150) with S = I'(i). 

In the axisymmetric case we obtain, correspondingly, 

(5.12) 

Equation (5.12) is similar to the equation for bending waves propagating over elastic 

In the axisymmetric case the self-similar solution is sought in the form of (5.7a, b) 

7 = r/(at)l/', (5.13) 

plates (Landau & Lifshitz 1959, p. l l l ) ,  albeit distinct from it. 

with 

and should satisfy the initial conditions (5.8). The equation for f reads 

(5.14) 

Using the solution of (5.14), we find that for large 7 the axisymmetric waves are 
described by the following expressions : 

2 s  1 x = 13/2 [cos (ir' +in) + sin (;v2 + +n)], 
7 

(5.15~)  

(5.1 5 b) ____ [cos (ir' +in) + sin Q7' +in)]. 

Solution (5.15) also corresponds to the following initial perturbation of x: 

(5.16) 

For comparison with experiments profile (5.15a) is plotted together with its 
curvature in figure 17. 

It is emphasized that capillary waves emerge only when the inertia forces on the left 
in the momentum equations (4.5) or (4.8) are of the same order of magnitude as the 
surface tension forces on the right, and they are in mutual competition. 
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6. Splashing as a kinematic discontinuity 

the following non-dimensional form : 
Consider, first, the planar problem and rearrange the governing equations (4.5) to 

ah -+-- ah V = 0, hr$+ V 3  = . ? ( h e )  e = a”f2/V:.  (6.1~-c) 
a t  ax ax ax2 ’ 

Here, as before in $4, h, is used as a scale for h, V, for V, l/f for t, and &/”for x .  
We consider the limit of e < 1. Then the outer solution of the momentum equation 

(6.1 b) satisfies the equation 
av av -+ V- = 0, 
at ax 

which is solved in the following parametric form (Whitham 1974, p. 43): 

V = F(() ,  x = F(()t+[. (6.3a, b) 
The function F describes an initial velocity distribution along the liquid layer, and 

( denotes the initial positions of the particles. This solution produces kinematic 
discontinuities in the function V(x) (‘shocks’) in finite time if there is a (-interval for 
which dF/d[ < 0 holds. 

To analyse the situation when such a discontinuity is formed, we write the continuity 
and momentum equations in the conservative form 

ah V ah V 2  
+----0, 0, ~ 

ah ah V -+- = 
at ax at ax 

(6.4a, b) 

whereas at the discontinuity the corresponding integral relations hold 

$ l : h d x  = h- V--h+ V+, $ l : h V d x  = h- VZ-h,  V;. (6.5a, b) 

Here h,  and V+ denote the thickness and velocity at x = xd 0 (xd is the discontinuity 
position), and and x ,  are some fixed cross-sections of the film, x, < xd < x,,  close 
to the discontinuity at the given moment of time. 

From (6.5) we arrive at the expressions for the velocity of the discontinuity U,  = 
dxd/dt: 

The last equality of (6.6) may be satisfied only if V_ = V,, which is in contradiction 
with the fact that, owing to (6.3), a discontinuity in the velocity distribution V 
inevitably emerges if e < 1 and dF/d( < 0 in some interval of the initial distribution. 
In the experiments performed and described above, the latter always happens with 
perturbations produced by subsequent drops impacting onto the solid surface, which 
is covered by a liquid layer. 

The discontinuity in the velocity distribution emerges independently of the continuity 
equation; the only possibility for it to be realized in an incompressible liquid layer is 
related to a sink at its front. (It will be shown below that there has to be a sink rather 
than a source.) This sink is visualized as a liquid outflow along the discontinuity front 
into a thin sheet. The continuity and momentum equations are thus generalized to the 
following non-dimensional conservative form : 

ah ah V ahV ah V 2  
(6.7a, b) -+- = Q0S(x-xd) ,  -+- - - ‘Qo ‘ ( X - x ~ ) ,  

a t  ax at ax 
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where Q, is the sink strength, which may depend on time. Note that we continue to seek 
the outer solution, neglecting the surface tension effect as small compared to that of the 
inertia. 

At the discontinuity the corresponding integral relations hold : 

$[:hdx = h- V--h+ V++ Q06(x-x,)dx, 1:: 
$I:hVdx = h- F - h ,  vZ,+ VQo6(x-x,)dx. 5:: 

(6.8a) 

(6.8 b) 

From (6.8) we arrive at the following jump conditions at the discontinuity ( U =  
dx,/dt) : 

- - U(h+ - h-) + h+ V, -h- V- = Q,, (6.9 a) 

- U(h+ V, - h- V-) + h+ V: - h- V2 = V, Q,, (6.9 b) 

is the velocity of the liquid at the discontinuity front. It should be equal to where 
the centre-of-mass velocity 

(6.10) 

if we neglect viscous losses of momentum at the impingement of liquid particles 
entering the discontinuity from both sides. 

By (6.9) and (6.10) we arrive at 

u = $(V- + V+). (6.11) 

From (6.9a) and (6.11) we arrive at the following expression for the sink strength: 

Q, = -:(A+ + h-) (V - V+). (6.12) 

The equations describing the discontinuity position are readily obtained from (6.3) 

(6.13 a, b) 

Since V_ > V,, Q, is actually negative, which corresponds to a sink. 

and (6.11) and have the form (Whitham 1974, p. 45): 

Xd(0 = <+ + m-+) 4 = <- + F(6-L) t, 
(6.13 c) 

with the unknowns x,, c+, and E-. 
An initial velocity distribution in the liquid film produced by a drop may be 

represented in the form of a single hump, schematically shown in figure 18. For such 
a distribution the system (6.13) has an asymptotic solution for sufficiently large t, when 
F(<+) = 0 and 6- --f 0 (Whitham 1974, p. 47) : 

(6.14a, b) 
J o  

which corresponds to 

v _  = F(6J = (2A/t)1/’, V, = 0, u = +(2A/t)’/Z (6.15 a-c) 

(L  is the dimensionless length of the hump). 
Under this asymptotic regime the propagation of the discontinuity wave (identified 

by a crown-like sheet) depends on a single characteristic of the initial velocity 
distribution - its integral A in (6.14b). 
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FIGURE 18. Initial velocity distribution in the layer created by drop impact. L is a 
scale related to the drop diameter. 

Note that a hump may have a more complicated configuration than that of figure 18. 
First, in the general case it need not be symmetric. Second, there may be a slight 
wavyness in F([), 0 < 6 < L. However, there should be a sharp decrease in F(6) near 
6 = 0 and 6 = L, similar to that of figure 18. This corresponds to the physical fact that 
there is a sharp boundary between the initial spot produced by a drop and a still 
unperturbed liquid layer outside it. All the results obtained hold for such a more 
complicated hump. 

In the asymptotic regime considered, V = F(<) = 0 for all 6 2 6+. Therefore, V E 0 
at x 2 x, + 0. At the same time, 6- + 0, which means that to each x < x, - 0 there 
corresponds a 6 < 6- < 1. For such small values of 6 the initial velocity distribution 
may be reduced to the first term of its Taylor series 

m) = B&, B > 0, (6.16) 

where the coefficient B is supposed to be known. 
From (6.3b) and (6.16) we find 

(6.17) 

which describes the velocity profile to the left of the discontinuity, i.e. at x d x,-0. 
From the continuity equation (4.5a) we obtain the following equation for h to the 

left of the discontinuity: 

(6.18) 
B 

-h- 
ah Bx ah -+-- = 
at 1 + Btax 1 +Bt’  

whereas to the right to the discontinuity 

ah 
- = 0. 
at 

Therefore. 

x < Xd, 

x > X d ,  

and we obtain the values of h at the discontinuity 

(6.19) 

(6.20) 

h- = 1+Bt, 1 h + =  1. (6.21 a, b) 
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Note that (6.21 a) is inapplicable in a certain interval of the intermediate values of t. 
Expressions (6.2 1 )  show that the discontinuity propagates towards the thicker 

section of the liquid film, detaching a part of it in the manner of a cutter and propelling 
it towards the crown. Knowing V ,  V+, h- and h,, we are able to calculate using (6.12) 
the volumetric flow rate to the crown Q, at any moment of time. 

The condition of discontinuity (and, therefore, crown) formation, e 4 1, may be 

(6.22) 
rewritten as V, % ( c ~ / p ) ' / ~ p / ~ h ; / ~ ,  

where h, is the unperturbed thickness of the liquid layer on the wall produced by 
preceding drops. In analogy with the original concept in gasdynamics, the ratio 
V,/(a'/4p-1/4fl/2hii4) may in a sense be called a modified Mach number, and (6.22) 
means that it is much larger than unity. The same analogy is applicable to the ratio 
V,/(ap-'h,')'l2 (i.e. the ratio of flow velocity to the characteristic propagation velocity 
of capillary waves) - under which definition (6.22) states that the modified Mach 
number is much larger than (hO/l)'I2, where I is the characteristic 'capillary length', 

The liquid film on the wall is damped by the viscous forces. Therefore, its thickness 
1 = (a/ph,)'/"-'. 

is of the order of 
(6.23) 

Note that (6.23) predicts fairly well the order of magnitude of the film thickness 
estimated in $3.2. Indeed, for u - lop6 m2 s-l andf-  lO4sP1 (6.23) yields h, - 10 pm, 
whereas the estimated values vary between 20 and 50 pm. 

Substituting (6.23) in (6.22) we arrive at the following estimate of the velocity range 

v, + (a/p)'/4 v'/8f3/*. (6.24) 
corresponding to splashing : 

It can readily be shown that all the above results are applicable to the axisymmetric 
case by simply replacing x with r.  The only difference concerns the form of the sink. 
The continuity and momentum equations in the axisymmetric case take the form 

where Q,/(2xrc) = --+(h+ + h-) (V- - V+), (6.26) 
which should be used instead of (6.12). Note that here we have changed the subscript 
from d to c to stress the identification of the discontinuity with the crown. The velocity 
to the left of the sink under the asymptotic regime is V = Br/(  1 + Bt), and the equation 
for the thickness takes the form 

Its solution reads h = (1 + Bt)-2 at r < rc,  which means that 

h, = 1.  
1 

(1 + Bt)2' 
h- = 

(6.27) 

(6.28a, b) 

The latter should be used instead of (6.21). 

7. Structure of the discontinuity wave 
Within the framework of the quasi-one-dimensional model used here, we are unable 

to account for the two-dimensional effects inside the discontinuity. By applying this 
model here, we mimic the internal structure of the discontinuity and prove that it 
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matches the outer solution found in $6. We first address the planar case. Bearing in 
mind (6.1) and (6.7), we arrive at the following non-dimensional equations for the 
structure of the discontinuity: 

Inside the discontinuity the singular right-hand side of the momentum equation 
(7.1 b) should survive as E --f 0, which means that the inner stretched variable should be 
taken as 

As a distributed delta-function inside the discontinuity as e+ 0 we use, for example, 

x = ( X - X d ( t > ) / P .  (7.2) 

By means of (7.1)-(7.3), bearing in mind that U = dx,/dt, we arrive at the inner 
equations 

x1,2 exp (- X) ,  h( V -  U )  - " = - a ( h-- a2h) (7.4a, b) ah(V- U )  - -- Q0 

ax ax ax a p  
with time only a parameter, introduced through the boundary conditions. Equations 
(7.4) mimic the effect of liquid outflow somewhere inside the discontinuity wave. 

The matching conditions for the solution of (7.4) read 

h+h-, V+V_ as X+-00, 

hi-h,, V+V+ as X++co, 

(7.5a, b) 

(7.5c, d )  

whereas all the derivatives of h and V tend to zero as X - t  & co. 

take 
To prove that a solution of (7.4) satisfies the matching conditions as X +  - co, we 

h=h-[l+X(X)], ( V - U )  =(V--U)[l-p(X)], (7.6a, b) 

X ,  p 4  1, ( 7 . 6 ~  d )  

which enables us to linearize the problem at the edge X - t  - 00 of the discontinuity 
structure. 

From (7 .4~)  and (7.6) we obtain 

x - p = 2 Q [ 1 + erf (X)], A- = h-( V- - U ) .  
2A- 

(7.7 a, b) 

Substituting (7.7) in (7.4b), linearizing and integrating once, we arrive at the 
equation : 

, N = -  2Qo (7.8a-c) 
a2p (V- - V+)2 
-+Wp= NXexp(-X), W = ax 4h- A - I ~ ~ / ~ '  

The solution of (7.8a) satisfying (7.5) reads 

N 
,5 = -2 { sin ( M X )  

whereas all the derivatives tend to zero as X - t  - co. 

exp (- E 2 )  sin (ME) dE+ cos ( M X )  p exp ( - c2) cos ( M c )  dE} , 
-m -m 

(7.9) 
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FIGURE 19. Internal structure of the discontinuity. (a) M = 1, N = -4; (b) M = 1 ,  N = - 5 ;  
(c) M = 1, N = - 6 ;  (d )  M = 1.5, N = -4. 

The solution at the right-hand edge of the discontinuity structure is obtainable 

(7.10~1, b) 

similarly and reads 

h = h + P  -X1(X>l, (V-  U )  = (6- WC1 -pl(x)l, 
x1, P I  6 1, (7.10c, d )  

exp (- cz) sin (MI  [) dc 

+ cos (MI X) exp ( - 6’) cos (MI  53 dt}, (7.1 Oe) 
00 

The latter satisfies all the matching conditions as X +  cn. 

Note a wavyness in the velocity distribution before the discontinuity. 
A continuous solution of (7.4) and (7.5) is found numerically and shown in figure 19. 

In the axisymmetric case we obtain instead of (7.4) the following equations: 

where the stretched coordinate is 

X = (r- rc(t))/~l/z. (7.12) 
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Equations (7.1 1) show that all the results of the planar case hold in the axisymmetric 
one on replacing Q,  with Q0/(2nr,). 

8. Comparison with experiment, and discussion 
First the capillary waves obtained in the experiment ($3.1) are compared with the 

theoretical wave pattern predicted in $5.  To this end the curvature of the film profile 
according to (5.1a) and (5.15a) was determined (see figure 17). Its maxima 
(corresponding to depressions in the wave profile) are expected to yield dark rings in 
the experiment (cf. figure 4) ,  since a liquid film has the effect of a dispersing lens in the 
depressions. We plot the values of y corresponding to the curvature maxima, yi(i = 1, 
2,. . .), as the horizontal lines in the y ( r )  diagram in figure 20. (The maximum of the 
curvature at y x 1.44 has little physical sense, since 1x1 < 1 is not fulfilled there.) The 
measured radii of the dark rings are plotted as the vertical lines in the same figure. As 
can be seen in figure 20, the intersection points of corresponding pairs of vertical and 
horizontal lines lie on a straight line. Its slope is Ay/Ar z 937 m-’. 

The theory also predicts y ( r )  dependence, corresponding to the depressions of the 
wave profile, in the form of a straight line (cf. (5.13)). For a time delay after impact of 
t x 5 ms, one obtains from (5.13) Ay/Ar = l/(at)’l2 = t-1/2(ah,/p)-1/4 = 995 m-’ (a = 
23 x m),  which agrees fairly well with the 
above value of Ay/Ar = 937 m-l found in the experiment. 

The fact that the straight line in figure 20 does not hit the origin is interpreted as a 
result of a shift in r inevitably appearing when a remote asymptotic solution is fitted 
to an initial flow region. In a sense the introduction of such a shift is similar to that of 
the ‘polar distance ’, required when comparing, for example, a self-similar solution for 
laminar or turbulent jets (Schlichting 1979; Abramovich 1963) with experimental data 
obtained for a jet issuing from an orifice. Nonlinear effects, which perhaps, affect the 
initial development of the wave train, may also lead to such a shift. 

The theoretical prediction of the velocity range for splashing in the form of the 
inequality (6.24) should be compared with the experimental threshold velocity, which 
was established in the experiment in $3.2 and may be rearranged to the following 
form : 

It is seen that the theoretical result (6.24) predicts exactly the same scaling as in @ . I ) ,  
and agreement is rather good. 

It is interesting to compare the splashing criterion obtained here with that for a single 
drop impacting a dry surface known from the literature. Several authors, e.g. Stow & 
Hadfield (1981), mention WeRe1/2 (or a power of it) as the relevant dimensionless 
number for splashing (We = pDV:/a is the Weber number and Re = V , D / v  is the 
Reynolds number). Notice that the relative power of viscosity, density and surface 
tension is the same in both cases. Indeed, (8.1) may be recast in the form V:s = 
const x (a/p)’vyf3, and the criterion of Stow & Hadfield (1981) in the form V:s = 
const x v( Thus one is led to substitutefby V,/D in the case of single drop 
impact and also to take (vD/V,)’ /~ as a scale for the liquid lamella thickness h,. This 
corresponds to the assumption that the characteristic time in single-drop impact is 
D/V,. In this way the scaling behaviour for the single-drop impact would be 
reproduced. 

kg s-’; p = 790 kg m-3, h, = 1.4 x 

V,, = 18(01/p)”~ v1/8f3”. (8.1) 

As first approximation of the initial velocity distribution on impact we use 
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FIGURE 20. Capillary waves: comparison between the experiment and theory (s3.1 and 5, 
respectively). Dark rings were measured at the drawn radii (vertical lines); they correspond to 7- 
values where the profile (5.154 has maximum curvature (horizontal lines). 

where R is the radius of the initial spot in the centre of the film produced by a drop. 
Note that we neglect momentum losses on impact. We can estimate R from the mass 
balance 

where D is the drop diameter. Recalling (6.23) we arrive at 
pnR2ho = tpp7cD3, (8.3) 

R = kD, k = (D/6)1’2/(~/’)1/4. (8.4a, b) 

The value of L corresponding to (6.14b) is L = Rf/ 5 = kDf/ 5. This is also the 
value, in the case here, of A in (6.14b) and (6.15). Therefore (6.14a) takes the form 

Vi’2 +/2 fj1/4n1/2vl/8D1/4 3/8 ’ f (8.5) 

where 7 = 2nft is non-dimensional time ( t  being the dimensional time). Note that here 
we adapt the definitions of the non-dimensional values of 9 6 to those of the experiment. 

Equation (8.5) describes the position of the crown (a liquid sheet virtually normal to 
the wall) during its propagation with the discontinuity as a function of time. It should 
be emphasized that (8.5) predicts the square-root dependence on time (on the phase 7),  

in good agreement with the experimental approximations of (3.1). In the experiment, 
however, the moment of impact and the initial spot formation are not known exactly 
and time is reckoned from an instant known typically up to a precision of about 0.1 
on the 7-scale. This, as well as in particular the fact that the experimental results are 
compared with theoretical predictions of the asymptotic solutions, brings in the 
shifting factor 70; therefore we should rewrite (8.5) in a form similar to (3.1) and (3.2): 

” v 1 / 2  

In a sense the introduction of 70 is similar to that of the ‘polar distance’ discussed 
above. The theoretical predictions of (8.6) in the cases corresponding to (3.1 a-c) take 
the form 

r , /D = 1.24(7- 1.38)’12, r, /D = 1 . 1 8 ( ~ -  1.54)1/2, rc /D  = 1.29(7- 1.28)1/2 
(8.7 U-C) 

and are plotted in figure 11 (a-c) against the experimental data. 
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Comparison of the above predictions with (3.1 a-c) shows fairly close agreement, 
with the theoretical values of r,/D consistently overestimated. This is due to our 
exclusion of the momentum losses at the moment of impact, when the effect of viscosity 
is inevitably significant because of the large velocity gradients involved. We use in (8.2) 
and (8.5)-(8.7) the impact velocity V, as an estimate of the initial velocity in the 
accelerated spot in the centre of film, while, in reality the impact losses dictate a lower 
value, thereby shifting (8.7) towards the experimental data. 

The square-root behaviour according to (8.5) can also be found in the results of 
Levin & Hobbs (1971) obtained for single-drop impact onto a quite thick liquid film 
of a given thickness h,. To compare their results one has to set k = [D/(6h,)]ll2 and 
f= V,/D, which leads to 

For V, = 4.8 m s-l, D = 2.9 x lop3 m and h, = 0.5 x 
0.536 x 
Hobbs (1971) by (8.8)) we find from (8.8) 

m and shifting time t, = 
s (obtained by fitting the first experimental point in figure 9 of Levin & 

r, = 165.3 x 10-3(t-t,)1/2, (8.9) 

which describes fairly well the experimental data in figure 9 of Levin & Hobbs (1971) 
with an overestimation of 11-19 %. The overestimation may be attributed partly to the 
effect of the rather thick liquid film which gives rise to a significant velocity component 
normal to the wall. 

As mentioned in 93, the compressibility effects do not affect the splashing threshold, 
which shows that they are 'forgotten' in the timescale of the whole process. Indeed, 
according to Bowden & Field (1964), under the conditions of the present experiment 
the compressibility effects are of importance before the radius of the contact periphery 
of a drop reaches a value of ro z DV,/(2c), where c is the compressional velocity for 
the liquid. For c - lo3 m s-l, V, - 10 m s-' and D - 300 pm we obtain ro - D/200 = 
1.5 pm. The compressed region at the bottom of the drop will be rarefied by a release 
wave; then sideways jetting begins. The time needed for jetting to begin can be 
estimated as r,/c = DV,/(2c2), which is of the order of 1.5 x lO-'s for the present 
experiment. Beginning from this moment the flow may be treated as incompressible. 

The characteristic time of splashing in the present experiment is (27if-1 - lop5 s 
(it corresponds to A7 = 1 in figure 11). Since (2nfl-l % r0 /c ,  the flow becomes 
incompressible almost immediately in the timescale of the splashing process as a whole 
(crown propagation and breakup). 

Much more time is needed for a drop to create the initial spot in the centre of the 
film. This time is of the order of D/ V, - 3 x lop5 s, which corresponds to 7 - 3 in figure 
11. The crown emerges and begins to propagate slightly before this moment. The 
velocity in the initial spot is of the order of V, since the losses appear to be negligible 
(Levin & Hobbs 1971). In a sense the time lag needed for the initial spot formation is 
partially absorbed in 70. 

In figure 8 it is seen that the effect of surface roughness on the splashing threshold 
is practically negligible in the present experiment - the data for R, = 1 and 16 pm are 
grouped together. Stow & Hadfield (1981) found that for a single drop surface 
roughness does not affect significantly the critical impact velocity for splashing if it is 
not at least two or three orders of magnitude smaller than the drop diameter. Stow & 
Stainer (1977) showed that surface roughness has a small effect on splashing when it 
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is varied beneath a liquid layer at the wall. Our experimental conditions fit this case: 
R, = 1 or 16 pm, and h, - (u/fl1” - 20 to 50 pm is larger than the roughnesses. Thus 
our conclusion about the independence of the results of surface roughness is consistent 
with the results of Stow & Stainer (1977) and Stow & Hadfield (1981). 

Kinematic discontinuities in thin liquid layers on a solid surface may emerge owing 
to the effect of centrifugal force in spin coating of Newtonian and power-law liquids 
(Emslie, Bonner & Peck 1958; Acrivos, Shah & Petersen 1960), or owing to the 
concentrational Marangoni effect in Marangoni drying (Jensen & Grotberg 1992 ; 
O’Brien 1993). In both of these cases the inertia of the liquid may be neglected in 
comparison with the viscous shear force acting in the thin liquid layer (lubrication 
approximation), which allows one to arrive at a quasi-one-dimensional equation of the 
evolution of the layer thickness. (A similar approach is used e.g. in Sharma & 
Ruckenstein 1988, Hwang & Ma 1989, and Yarin, Oron & Rosenau 1993, and allows 
one to account for surface tension, gravity and some other effects.) This equation for 
the layer thickness is similar to (6.2) under the conditions when surface tension and 
gravity are negligible, and yields the emergence of a jump in the film thickness. 

It should be noted that in the present case of splashing, the inertia of the liquid layer 
is accounted for and, being much larger than surface tension, leads to the emergence 
of a kinematic discontinuity in the velocity field manifesting itself in crown formation. 

Most of the results on the emergence of kinematic discontinuities in spin coating, 
Marangoni drying, and in the present case of splashing, are obtained in the framework 
of the quasi-one-dimensional equations. Such equations are relevant even in the cases 
when a discontinuity sets in, since the film outside the discontinuity continues to be 
smooth enough, whereas consideration of the discontinuity is separated by jump 
conditions. Nevertheless, a much more complete (and complicated) two-dimensional 
analysis is desirable. A two-dimensional model might also be useful in the present case 
to match the outer inviscid splashing solution with the model of viscous flow in the 
neighbourhood of the moving ejection line shown in figure 6 of Peregrine (1981). 

Consider now the breakup of the crown top leading to the formation of secondary 
droplets. At the top of the crown surface tension forces create a motion of liquid 
towards the wall. As a result a swell in the form of a rim emerges and moves over the 
crown to the wall, sucking in new liquid. The speed of propagation of such a rim was 
calculated by Taylor (1959) as V* = [2a/(p6)]”’, where 6 is the crown wall thickness. 
In a sense such a rim is similar to a toroidal cylinder and, in principle, may be subject 
to capillary instability due to the growth of longitudinal perturbations leading to a 
reduction of its surface area and breakup. This scenario, similar to the capillary 
breakup of thin free jets (Rayleigh 1878), does not agree, however, with the 
experimental evidence in the given case. Indeed, according to our measurements the 
crown wall thickness 6 5 D/15. Estimating the lowest value of the rim cross-section 
radius at the top of the crown as 6/2 = D/30, we arrive at the wavelength of the fastest 
growing perturbation A, = 27~(6/2)/0.698 = 96 (low-viscosity liquids, Rayleigh 1878 
and Yarin 1993, p. 2). The length of the toroidal cylinder (rim) L = 27cr,. Thus the 
number of droplets produced by the rim is n = L/h, = 2nrC/(9D/30). According to 
figure 9 of Levin & Hobbs (1971) L = 4 mm at the moment of crown emergence when 
perturbations set in; the drop diameter D = 2.9 mm and thus the number of secondary 
droplets emerging simultaneously from the rim n = 5 .  It should be noted that the value 
of n is overestimated since we underestimate the rim cross-section radius and do not 
account for a stabilization of a jet (in the case here, a rim) by stretching (Taylor 1934; 
Tomotika 1936; Mikami, Cox & Mason 1976; Khakhar & Ottino 1987). (The rim is 
stretched when the crown wall propagates outwards from the point of drop impact.) 
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FIGURE 21. Cusp formation in the free rim at the top of the crown. Numeral 0 marks the initial 
configuration of the rim axis; 1 and 2 show intermediate configurations, whereas at 3 the cusp appears 
at point C. The crown wall is always below the rim in the figure. A thin jet from the cusp will be issued 
in the negative direction of the Y-axis leading to formation of secondary droplets (due to its breakup) 
above the crown (cf. figure 1 b). 

Even this overestimated value of n is much smaller than the number of jets issuing 
upwards from the top of the crown shown in figure 8 of Levin & Hobbs (1971) which 
is approximately equal to 10 on the half of the crown seen in the photograph. The 
overall number of secondary droplets emerging simultaneously from the crown rim in 
the experiment is of the order of 20, whereas the prediction based on the assumption 
that the breakup results from the capillary instability of the rim yields n = 5.  The latter 
shows that such a scenario does not hold. 

We can arrive at the same conclusion using the data obtained in the present 
experiment. From figure 14 we obtain the mean secondary droplet diameter to be of 
the order of d = 0.060. One main secondary droplet is produced per wavelength along 
the free rim, considered as a jet in the process of capillary breakup. Thus 7t(6/2)2 A, = 
7td3/6, which yields for 6/2 = 0 / 3 0  the value of A, = 0.03240. The number of 
simultaneously emerging secondary droplets is, thus, n = 27crc/A, = (2x/0.0324)rC/D. 
The value of rc/D is close to unity at the moment of crown emergence (figure 11). 
Therefore n z 200, which is an order of magnitude higher than the real number of 
secondary droplets per rim circumference in the present experiment (see figure 16). 

On the photographs in figure 8 of Levin & Hobbs (1971), as well as on many other 
photographs of breaking liquid films, it is clearly seen that the formation of droplets 
begins from cusps on the free rim. Such cusps inevitably result from the dynamics of 
a free rim (Yarin 1993, pp. 27-28). Indeed, the configuration of the free rim is governed 
by the eauation 

(8.10) 

which simply expresses the fact that the rim propagates normally to its instantaneous 
configuration with the speed V,  = [2a/(p6)]1/2 (Y- and z-axes are depicted in figure 21). 
The reference frame is ‘frozen’ in the film far enough from the rim. 

This equation is solved under the initial condition t = 0, Y = Y,(z) describing an 
initial perturbed (if Y,  =k const) form of the rim (see figure 21). Equation (8.10) is the 
eikonal equation which is solved by integration along its characteristic curves 
(Whitham 1974, pp. 241-242). This is identical with the Huygens principle applied to 
construct solutions in geometrical optics and combustion theory (Whitham 1974 ; 
Zeldovich et al. 1985). An example of a solution of (8.10) is shown in figure 21, where 
the initial configuration of the rim axis (marked by 0; the crown wall is below it) 
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arrives, via some intermediate configurations (marked 1 and 2), at the configuration 
with a cusp (3) at point C. At this cusp two neighbouring sections of the free rim 
impinge. As a result a thin jet originates from the cusp, which breaks up into secondary 
droplets under the action of surface tension forces (Yarin 1993, pp. 27-28). It is evident 
that the number of such jets (as well as cusps) producing secondary droplets is 
governed by the source of initial perturbations (details of drop impact, surface 
roughness, etc.) and may be large because one cusp corresponds to each convex section 
of the initial rim. 

A cusp propagates with a velocity V,/cos 8, faster than point B propagating with a 
velocity V,  (angle 0 and point B are shown in figure 21). Therefore the cusp amplitude 
A ,  decreases as dA,/dt z - V,(l/cos 8- 1) leading to the less pronounced pattern of 
figure 16 of the present work than that of figure 8 of Levin & Hobbs (1971). 

Note that in the general case disturbances of the top of the crown are non- 
axisymmetric. Therefore the crown may break up in different ways on different sides, 
as is seen in figure lO(c). The presence of these non-axisymmetric disturbances of the 
rim may have an effect on flow inside the crown and lamella. However, above we 
assumed that the rim does not affect the flow in the crown and lamella. This 
assumption rests on two facts. First, the liquid always flows from the crown to the rim 
(the reverse flow is not seen in experiments with free rims at the edges of the free films; 
Yarin 1993, p. 256). Secondly, only fairly rapid flows are considered in which 
perturbations are propagated mostly along the flow. 

The secondary droplet size distributions shown in figure 14, with bumps at larger 
values of d/D as well as their global maximum at d/D z 0.06, cannot be represented 
accurately by the log-normal distribution function employed by Stow & Stainer (1977) 
for single-drop impact. Probably these bumps result from nonlinear effects leading to 
satellite droplet formation in the capillary breakup of thin jets issuing from the cusps. 

Speculating on the effect of an increase in the dimensionless impact velocity u, one 
might expect that these bumps will disappear completely owing to further chaotization 
of flow in the lamella, crown and thin jets. One of the existing models of chaotic 
disintegration of a liquid mass (e.g. the percolation model of Sultanov & Yarin 1990 
and Yarin 1993, pp. 338-348, or the combinatorial model of Cohen 1991) might be 
useful in future for an analysis of droplet size distributions after a drop impact. 

Under the assumption that the asymptotic stage of splashing for large t considered 
in $6 has the dominant effect on the result, it should in principle be possible to estimate 
analytically the total volume of secondary droplets. Using (6.26), (6.14), (6.19, (8.4b), 
and the expression A = kDf/ V, obtained above in the present Section, we arrive at the 
expression 

(8.11) 

Here W is the total volume of the droplets per unit time in units of drop volume. 
Unfortunately, the actual duration of their generation in the process of crown 
propagation is unknown and only the onset of mass ejection can be estimated roughly. 
Extrapolating the straight line in figure 13 backwards to h, = 0, we obtain the starting 
point at r,/D z 0.23. From this we arrive, via figure 11 (b), at 7 = 1.4 as starting value 
for the ejection onset phase. This estimate is not very sensitive to the uncertainties in 
the value of r,/D due to the infinite slope of the curves at 7 = 70 in figure 11, but still 
does not enable us to obtain via (8.11) data for comparison with the experimental 
results plotted in figure 15. 
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9. Conclusions 
Self-similar capillary waves were measured experimentally and calculated ana- 

lytically. It was confirmed that the relevant variable in the liquid film is q = r/(at)'/'. 
The measured maxima of the film surface curvature fit well those of the calculated 
profile. 

The impact of drop trains on solid surfaces was investigated experimentally and 
theoretically. A quasi-one-dimensional model was developed for the flow in the liquid 
lamella on the wall. The model predicts the existence of a new type of kinematic 
discontinuity wave, namely a discontinuity in the velocity and film-thickness 
distributions. This discontinuity shows many aspects of a shock wave, but also 
propagates in an incompressible liquid. The discontinuity has a sink of mass at its front, 
which corresponds to the emergence of a thin liquid sheet parallel to the discontinuity 
front and virtually normal to the film on the wall. This sheet propagates outwards from 
the point of drop impact together with the discontinuity, and is identified with the 
crown accompanying splashing in the experiments. This crown is unstable owing to the 
formation of a free rim at its top, which results in cusps from which thin jets emerge. 
Capillary breakup of the jets leads to the formation of a cloud of secondary droplets. 

The kinematic discontinuity wave in splashing is essentially different from a 
hydraulic jump, since the dominating forces, besides the inertial ones, are capillary 
rather than gravitational. 

The model predicts the emergence of the kinematic discontinuity wave and splashing 
at e = c t ~ ' / 2 f 3 / ~ / ( p  V:) 4 1 (a is the surface tension coefficient, v the kinematic viscosity, 
f the frequency, p the density, and V, the impact velocity). Experimental results permit 
a quantitative statement: splashing emerges if e 5 18-*. From this it can be seen that 
surface tension is the dominant damping force. The internal structure of the kinematic 
discontinuity wave is discussed. 

The emergence of similar kinematic discontinuity waves in incompressible liquid 
flows with free surfaces may be predicted in some other situations. For example, in free 
liquid jets of relatively large radius with strong pulsations in the issue velocity imposed 
by a piston, crowns similar to those of splashing can clearly be seen along the jet axis 
in figure 7(c )  in Meier, Klopper & Grabitz (1992). They appear for the same reason as 
in drop impact, since the quasi-one-dimensional momentum equation for liquid jets 
with inertia dominating over surface tension takes the form of (6.2) (Yarin 1993). 
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